Minggu, 22 Oktober 2017

UKURAN VARIASI





    • Pengertian ukuran variasi atau dispers                                 Ukuran dispersi atau ukuran variasi atau ukuran penyimpangan adalah ukuran yang menyatakan seberapa jauh penyimpangan nilai-nilai data dari nilai-nilai pusatnya atau ukuran yang menyatakan seberapa banyak nilai-nilai data yang berbeda dengan nilai-nilai pusatnya.
Terdapat beberapa macam ukuran variasi atau dispersi, misalnya nilai jarak (range), rata-rata simpangan (mean deviation), varians, simpangan baku (standard deviation)dan koefisien variasi (coefficient of variation).


A. Pengukuran Dispersi Data Tidak Dikelompokkan

1.Nilai Jarak (Range)
Diantara ukuran variasi yang paling sederhana dan paling mudah dihitung adalah nilai jarak (range). Jika suatu himpunan data sudah disusun menurut urutan yang terkecil (X1) sampai dengan yang terbesar (Xn), maka untuk menghitung range digunakan rumus berikut:

Range = Xn - X1

2.Rata-rata Simpangan (Mean Deviation)
Rata-rata simpangan (RS) adalah rata-rata hitung dari nilai absolut simpangan yang dirumuskan:


3. Varians
Varians merupakan rata-rata hitung dari kuadrat simpangan setiap pengamatan terhadap rata-rata hitungnya. Varians terbagi dua berdasarkan data yang digunakan, apakah data populasi ataukah data sampel.



4.Simpangan Baku (Standard Deviation)
Simpangan baku merupakan akar kuadrat positif dari varians. Diantara ukuran dispersi atau variasi, simpangan baku adalah yang paling banyak digunakan sebab memiliki sifat-sifat matematis yang sangat penting dan berguna sekali untuk pembahasan teori dan analisis. Simpangan baku digunakan untuk mengukur penyimpangan atau deviasi masing-masing nilai individu dari suatu himpunan data terhadap rata-rata hitungnya. Satuan simpangan baku mengikuti data aslinya. Seperti pada varians, simpangan baku juga dibagi menjadi simpangan baku populasi dan simpangan baku sampel.




B. Pengukuran Dispersi Data Berkelompok


1.Nilai Jarak (Range)
Untuk data berkelompok, range dapat dihitung dengan dua cara yaitu:
Range =  Nilai Tengah Kelas Akhir - Nilai Tengah Kelas Pertama
atau:
 Range =  Tepi Atas Kelas Akhir - Tepi Bawah Kelas Pertama

Kedua cara di atas akan memberikan hasil yang berbeda. Cara pertama cenderung menghilangkan kasus-kasus ekstrim.

2.Varians
Untuk data yang berkelompok dan sudah disajikan dalam tabel frekuensi, rumus varians adalah sebagai berikut:
 

3.Simpangan Baku (Standard Deviation)
Untuk data yang berkelompok dan sudah disajikan dalam tabel frekuensi, rumus simpangan baku adalah sebagai berikut: