Sabtu, 18 November 2017

PROBABILITAS


1. Pengertian Probabilitas 
adalah suatu nilai yang digunakan untuk mengukur tingkat terjadinya suatu kejadian yang acak. Kata probabilitas itu sendiri sering disebut dengan peluang atau kemungkinan. Probabilitas secara umum merupakan peluang bahwa sesuatu akan terjadi.

2. Konsep probabilitas 
memiliki peranan yang penting dalam kehidupan sehari-hari, mulai dari bidang ilmiah, bidang pemerintahan, bidang usaha atau industri, sampai pada masalah-masalah kecil seperti masuk kantor atau tidak karena awan tebal yang kemungkinan akan hujan deras dan banjir.
 
Dalam mempelajari probabilitas, ada tiga kata kunci yang harus diketahui yaitu eksperimen, hasil (outcome) dan kejadian atau peristiwa (even). Sebagai contoh, sebuah eksperiman dilakukan dengan menanyakan kepada 100 orang pembaca, apakah mereka akan mengambil mata kuliah statistik atau kalkulus. Dari eksperimen ini akan terdapat beberapa kemungkinan hasil. Contohnya kemungkinan hasil pertama ialah sebanyak 58 orang akan mengambil mata kuliah apapun. Kemungkinan hasil lain adalah bahwa 75 orang mengambil mata kuliah kalkulus dan sisanya mengambil mata kuliah statistik. Contoh lain dari eksperimen adalah pelemparan sebuah dadu. Hasil (outcome) dari pelemparan sebuah dadu tersebut kemungkian akan keluar biji satu atau biji dua atau biji tiga dan seterusnya. Kumpulan dari beberapa hasil tersebut dikenal sebagai kejadian (even).
 
Probabilitas biasanya dinyatakan dengan bilangan desimal (seperti 0,50, 0,20 atau 0,89) atau bilangan pecahan seperti 5/100, 20/100, 75/100. Nilai dari probabilitas berkisar antara 0 sampai dengan 1. Jika semakin dekat nilai probabilitas ke nilai 0, maka semakin kecil juga kemungkinan suatu kejadian akan terjadi. Jika semakin dekat nilai probabilitas ke nilai 1, maka semakin besar peluang suatu kejadian akan terjadi.

3. Rumus Probabilitas
Probabilitas merupakan suatu perhitungan untuk mendapatkan nilai antara 0 s/d 1, yang menunjukkan seberapa besar peluang kemungkinan terjadinya suatu peristiwa atau suatu kejadian.
  • Probabilitas disimbolkan dengan huruf P (Probability)
  • Suatu kejadian atau Peristiwa disimbolkan dengan huruf E (Event)
  • Seberapa banyak kejadian yang diinginkan terjadi disimbolkan dengan X
  • Jumlah seluruh kemungkinan yang akan terjadi disimbolkan dengan Huruf N
        
                                             P(E)= X/N

4. Perhitungan Nilai Peluang Hukum Probabilitas
Asas perhitungan probabilitas dengan berbagai kondisi yang harus diperhatikan:
A. Hukum Pertambahan
terdapat 2 kondisi yang harus diperhatikan yaitu:
  • Mutually Exclusive (saling meniadakan)
Rumus: P (A U B) = P (A atau B)= P (A) + P (B)
AB
Contoh:
Probabilitas untuk keluar mata 2 atau mata 5 pada pelemparan satu kali sebuah dadu adalah:
P(2 U 5) = P (2) + P (5) = 1/6 + 1/6 = 2/6
  • Non Mutually Exclusive (dapat terjadi bersama)
Peristiwa Non Mutually Exclusive (Joint) dua peristiwa atau lebih dapat terjadi bersama-sama (tetapi tidak selalu bersama. Contoh penarikan kartu as dan berlian
P (A U B) =P(A) + P (B) – P(A ∩B)
AB1
Peristiwa terjadinya A dan B merupakan gabungan antara peristiwa A dan peristiwa B. Akan tetapi karena ada elemen yang sama dalam peristiwa A dan B, gabungan peristiwa A dan B perlu dikurangi peristiwa di mana A dan B memiliki elemen yang sama.
Dengan demikian, probabilitas pada keadaan di mana terdapat elemen yang sama antara peristiwa A dan B maka probabilitas A atau B adalah probabilitas A ditambah probabilitas B dan dikurangi probabilitas elemen yang sama dalam peristiwa A dan B.
B. HUKUM PERKALIAN
Terdapat dua kondisi yang harus diperhatikan apakah kedua peristiwa tersebut saling bebas atau bersyarat.
  • Peristiwa Bebas (Independent)
Apakah kejadian atau ketidakjadian suatu peristiwa tidak mempengaruhi peristiwa lain. Contoh: Sebuah coin dilambungkan 2 kali maka peluang keluarnya H pada lemparan pertama dan pada lemparan kedua saling bebas.
P(A ∩B) = P (A dan B) = P(A) x P(B)
Contoh soal 1:
Sebuah dadu dilambungkan dua kali, peluang keluarnya mata 5 untuk kedua kalinya adalah:
P (5 ∩ 5) = 1/6 x 1/6 = 1/36
Contoh soal 2:
Sebuah dadu dan koin dilambungkan bersama-sama, peluang keluarnya hasil lambungan berupa sisi H pada koin dan sisi 3 pada dadu adalah:
P (H) = ½, P (3) = 1/6
P (H ∩ 3) = ½ x 1/6 = 1/12
  • Peristiwa tidak bebas (Hk. Perkalian)
Peristiwa tidak bebas > peristiwa bersyarat (Conditional Probability).
Dua peristiwa dikatakan bersyarat apabila kejadian atau ketidakjadian suatu peristiwa akan berpengaruh terhadap peristiwa lainnya.
Contoh: Dua buah kartu ditarik dari set kartu bridge dan tarikan kedua tanpa memasukkan kembali kartu pertama, maka probabilitas kartu kedua sudah tergantung pada kartu pertama yang ditarik.
Simbol untuk peristiwa bersyarat adalah P (B│A) -> probabilitas B pada kondisi A
P(A ∩B) = P (A) x P (B│A)
Contoh :
Dua kartu ditarik dari satu set kartu bridge, peluang untuk yang tertarik keduanya kartu as adalah sebagai berikut: Peluang as I adalah 4/52 -> P (as I) = 4/52
Peluang as II dengan syarat as I sudah tertarik adalah 3/51
P (as II │as I) = 3/51
P (as I ∩ as II) = P (as I) x P (as II│ as I) = 4/52 x 3/51 = 12/2652 =1/221